首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53206篇
  免费   6545篇
  国内免费   4027篇
化学   27585篇
晶体学   298篇
力学   2705篇
综合类   948篇
数学   15282篇
物理学   16960篇
  2023年   543篇
  2022年   878篇
  2021年   1886篇
  2020年   1557篇
  2019年   1615篇
  2018年   1212篇
  2017年   1427篇
  2016年   1965篇
  2015年   1885篇
  2014年   2500篇
  2013年   4182篇
  2012年   2770篇
  2011年   3095篇
  2010年   2713篇
  2009年   3380篇
  2008年   3505篇
  2007年   3672篇
  2006年   2915篇
  2005年   2229篇
  2004年   1894篇
  2003年   1842篇
  2002年   1628篇
  2001年   1450篇
  2000年   1159篇
  1999年   965篇
  1998年   977篇
  1997年   669篇
  1996年   723篇
  1995年   637篇
  1994年   598篇
  1993年   613篇
  1992年   573篇
  1991年   413篇
  1990年   341篇
  1989年   291篇
  1988年   317篇
  1987年   278篇
  1986年   274篇
  1985年   413篇
  1984年   308篇
  1983年   180篇
  1982年   345篇
  1981年   511篇
  1980年   457篇
  1979年   499篇
  1978年   403篇
  1977年   302篇
  1976年   254篇
  1974年   90篇
  1973年   168篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
Experimental studies show that copper complexes can be effectively anchored onto the pores of mesoporous solids, having a good catalytic performance in several reactions, among them the aziridination of olefins and in particular, styrene. In this work, the mechanism of the aziridination of styrene catalyzed by a bis(oxazoline) copper(I) complex was studied in detail by means of density functional theory (DFT) calculations. For such reactions in the homogeneous phase, our calculations revealed a wide diversity of reaction‐pathways, which have not been considered in previous studies, and should be taken into account due to the small energy differences between them. What is more, our results show that there is a strong dependence on the chosen DFT functional. This has profound implications on the way the heterogeneous reaction is studied. © 2013 Wiley Periodicals, Inc.  相似文献   
992.
The interactions between a size‐expanded Guanine analogue x‐Guanine (xG) and gold nanoclusters, Aun (n = 2, 4, 6, and 8), were studied theoretically using density functional theory. Geometries of neutral complexes were optimized using the B3LYP functional with the 6‐31+G(d,p) basis set for xG and the LANL2DZ basis set for gold clusters. The binding modes, interaction strength, and the charge‐transfer properties of different Aun‐xG complexes were investigated. Natural population analysis was performed for natural bond order charges. It was found that gold nanoclusters form stable complexes with xG and these binding results in a substantial amount of electronic charge being transferred from xG to the gold clusters. The vertical first ionization potential, electron affinity, Fermi Level, and the HOMO–LUMO gap of xG and its complexes with gold nanoclusters were also analyzed. © 2013 Wiley Periodicals, Inc.  相似文献   
993.
Based on an earlier article (Eberly and Singh, Phys. Rev. D 1973 , 7, 359) and related works on short‐time evolution, this article proposes a many‐electron formulation for the nonstationarity degree which can be assigned to quantum system at each time point. The key measure introduced, , is a nonstationarity index that can be thought of as an inverse nominal lifetime at each instance of time. The index is directly computed from the time derivative of one‐electron density matrix and is a size‐consistent quantity. In this article, the approach is developed for the time‐dependent Hartree–Fock (TDHF), single‐excitation (TDCIS), and time‐dependent full configuration interaction (TDFCI) models. As a rule, nonstationarity effects are more pronounced in correlated electron systems, and a joint analysis of and the multiconfigurational character of wave functions apparently provide a deeper insight into dynamical molecular processes. The performed calculations on small molecules in laser fields show a preference for the TDCIS model when comparing TDCIS and TDHF with the “exact” TDFCI model. © 2013 Wiley Periodicals, Inc.  相似文献   
994.
The p‐π conjugation of tetra(naphthalene‐dione)porphyrins and tetra(naphthalene‐dithione)porphyrins is clarified on the basis of density functional theory studies. When carbonyl/thionyl is introduced, π bonds on the molecular skeleton become strong–weak alternated, and the conjugation transforms from “benzene‐type” to “butadiene‐type.” The unidirectional photon‐induced current associated with the p‐π conjugation enables the light‐harvesting efficiency of this kind of molecular skeleton reaches 90% in the range of 300–800 nm. Therefore, these compounds are ideal alternative for panchromatic dye‐sensitized solar cells. © 2013 Wiley Periodicals, Inc.  相似文献   
995.
The intermolecular interactions of formic acid (HCOOH) with benzene (C6H6) have been investigated using localized molecular orbital energy decomposition analyses (LMO‐EDA) with ab initio MP2 and several double‐hybrid density functionals. The molecular geometries of five HCOOH…C6H6 complexes and corresponding benchmark total interaction energies at the CCSD(T)/CBS level are taken from literature (Zhao et al., J. Chem. Theory Comput. 2009, 5, 2726). According to the results of LMO‐EDA with the MP2 method, the dispersion energies are found to be as important as the electrostatic energies for the total interaction energies of the five HCOOH…C6H6 complexes. Based on LMO‐EDA with the double‐hybrid density functionals of B2PLYP, B2K‐PLYP, B2T‐PLYP, and B2GP‐PLYP computations, two new parameters for the framework of B2PLYP are extrapolated. These two new parameters are tested with other 10 complexes involving C6H6 (Crittenden, J. Phys. Chem. A 2009, 113, 1663), and they perform well on predicting the corresponding total interaction energies. Interestingly, these two new parameters for the framework of B2PLYP also perform well on the noncovalent complexation energies database (NCCE31/05) developed by Truhlar's group (Zhao and Truhlar, J. Phys. Chem. A 2005, 109, 5656). Therefore, these two new parameters appear to be suitable for investigating the noncovalent interactions, and they are denoted as B2N‐PLYP, where N stands for the noncovalent interaction. This study is expected to provide new insight into the derivation of double‐hybrid density functionals for studying the noncovalent interactions. © 2013 Wiley Periodicals, Inc.  相似文献   
996.
The geometries, stabilities, and antioxidant activities of L‐Ascorbic acid (1a), D‐erythroascorbate (2a), and D‐erythroascorbate glucoside (3a) as well as their sulfur and selenium derivatives are systematically investigated by using density functional theory. Emphasis is placed on studies of the two main mechanisms, that is, hydrogen atom donation and single‐electron transfer, and the O—H bond dissociation enthalpy and the ionization potential are computed in the gas phase and water solution. The calculated results indicate that the 2‐OH group in the five‐membered ring acts as an important H atom donor to free radicals. The 2‐OH radical spin density distribution shows that the unpaired electron is mostly located at the C3 atom of the five‐membered ring and partially at the vicinal O atoms, proving that a certain delocalization of the odd electron is effective in the five‐membered ring. In water aqueous solution, the antioxidant capacity and the electron donating ability are increased as the O atom in the five‐membered ring of 1a, 2a, and 3a is replaced by S and Se, respectively, in good agreement with experimental measurements; Furthermore, their antioxidant capacities are enhanced as compared with the standard antioxidant (resveratrol). © 2013 Wiley Periodicals, Inc.  相似文献   
997.
For a graph G, a “spanning tree” in G is a tree that has the same vertex set as G. The number of spanning trees in a graph (network) G, denoted by t(G), is an important invariant of the graph (network) with lots of decisive applications in many disciplines. In the article by Sato (Discrete Math. 2007, 307, 237), the number of spanning trees in an (r, s)‐semiregular graph and its line graph are obtained. In this article, we give short proofs for the formulas without using zeta functions. Furthermore, by applying the formula that enumerates the number of spanning trees in the line graph of an (r, s)‐semiregular graph, we give a new proof of Cayley's Theorem. © 2013 Wiley Periodicals, Inc.  相似文献   
998.
Density functional theory calculations were performed at the B3LYP/6‐311++G(d,p) level to systematically explore the geometrical multiplicity and binding strength for the complexes formed by alkaline and alkaline earth metal cations, viz. Li+, Na+, K+, Be2+, Mg2+, and Ca2+ (Mn+, hereinafter), with 2‐(3′‐hydroxy‐2′‐pyridyl)benzoxazole. A total of 60 initial structures were designed and optimized, of which 51 optimized structures were found, which could be divided into two different types: monodentate complexes and bidentate complexes. In the cation‐heteroatom complex, bidentate binding is generally stronger than monodentate binding, and of which the bidentate binding with five‐membered ring structure has the strongest interaction. Energy decomposition revealed that the total binding energies mainly come from electrostatic interaction for alkaline metal ion complexes and orbital interaction energy for alkaline earth metal ion complex. In addition, the electron localization function analysis show that only the Be? O and Be? N bond are covalent character, and others are ionic character. © 2012 Wiley Periodicals, Inc.  相似文献   
999.
To investigate the correlation between the wavelength dependence of ionization threshold fluence of target molecule in matrix‐assisted laser desorption/ionization by infrared (IR) laser and the IR absorption spectrum of matrix molecule, we have analyzed the IR absorption spectra of four matrix molecules using density functional theory and correlated ab initio molecular orbital method. The calculated IR absorption spectra of the isolated molecules showed more qualitative correlation with the wavelength dependence of ionization threshold fluence than those of the solid state structures. We can consider that a portion of matrix molecules lost the ordered crystal structure and that the transition to the diluted or isolated state occurred at the early process of IR laser irradiation. © 2012 Wiley Periodicals, Inc.  相似文献   
1000.
In asymmetric Michael addition between ketones and nitroolefins catalyzed by L ‐proline, we observed that it was benzoic acid or its derivatives rather than other proton acid that could accelerate the reaction greatly, and different benzoic acid derivatives brought different yields. To explain the experimental phenomena, a density functional theory study was performed to elucidate the mechanism of proline‐catalyzed asymmetric Michael addition with benzoic acid. The results of the theoretical calculation at the level of B3LYP/6‐311+G(2df,p)//B3LYP/6‐31G(d) demonstrated that benzoic acid played two major roles in the formation of nitroalkane: assisting proton transfer and activating the nitro group. In the stage of enamine formation from imine, the energy profiles of benzoic acid derivatives were also calculated to investigate the reasons why different benzoic acid derivatives caused different yields. The results demonstrated that the pKa value was the major factor for p‐substituted benzoic acid derivatives to improve the yields, whereas for m/o‐substituted benzoic acid derivatives, both pKa value and electronic and steric effects could significantly increase the yields. The calculated results would be very helpful for understanding the reaction mechanism of Michael addition and provide some insights into the selection of efficient additives for similar experiments. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号